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SUMMARY 
A certain fourth-order differential equation is solved numerically by the method of finite differences. Conditions on the 
original differential equation are given which are sufficient to quarantee that the matrix thus produced is monotone 
so that a straightforward error analysis is possible. This error analysis is given in detail. Examples are given which 
demonstrate the validity of this error analysis. 

1. Introduction 

We consider the problem of bending of  a uniformly loaded rectangular  plate of  length l 
supported over the entire surface by an elastic foundat ion and rigidly supported along the 
edges. The deflection w of the plate satisfies the differential system 

d 4 w 
D ~x4  + kw = q , 

(1.1) 
d 2 w 

w(+_I/2) = O, dx 2 (_+//2) = 0 ,  

where D is the flexural rigidity of the plate, k is the reaction of  the foundat ion  per unit area for 
a deflection equal to unity, and q denotes the intensity of  the cont inuously distributed load. 
The details of  the mechanical  interpretat ion of (1.1) and its analytic solution for the special case 
where D, k, q are constants  are given in [4, p. 30]. Mathemat ica l ly  (1.1) belongs to a general 
class of  boundary  value problems of  the form 

d4Y + f ( x ) y  = 9(x)  f ( x )  > O, 
dx 4 ' _ 

(1.2) 
y(a) = 0~1, y ( b ) =  o~ z , y"(a) = i l l ,  y " ( b ) =  f12. 

The analytical solution of the system (1.2) for all f ( x )  and 9(x) cannot  be found. 
Faced  with this difficulty we resort  to numerical  methods  for obtaining an approximate  

solution of  the system. The most  widely used technique for approximat ing  y over a finite set of  
grid points {x,} c (a, b) is by finite difference methods.  M a n y  authors  have considered the 
use of  finite difference methods  for solving ordinary differential systems, see for instance 
[1, 2, 5]. 
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** Supported in part by grants from the National Research Council of Canada while visiting the University of Alberta, 
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Our purpose in this paper is to formulate a second order finite difference method for the 
approximate determination of y over {Xn} and to study the error in this method. 

We formally introduce the method in the next section. In Section 3 we begin an analysis of the 
error incurred by using the method. Since completion of this analysis requires that a certain 
set of matrices be monotone, we denote Section 4 to a proof of this fact. The convergence of our 
finite difference method is proved in Section 5. In conclusion, a survey of some experimental 
results is given in Section 6 to demonstrate the practical usefulness of the method. 

2. Finite difference scheme 

For a direct numerical solution of the boundary value problem (1.2) we first introduce a finite 
sequence {xn} so that 

x , = a + n h ,  n = 0 , 1  . . . . .  N + I ,  (2.1) 

where 

x o = a ,  XN+I = b ,  
and 

h = ( b -  a ) / ( N  + 1). (2.2) 

We let y~ be the approximation to the exact solution of the system (1.2) at x =xi ,  namely y(x~). 

The vectors Y=(y~) and Y=(y(xi))  will satisfy the matrix equations 

A Y = C  and A Y = C + T ,  

where A = (alj) is a five-band matrix of order N with 

5+h4f / ,  i = j  = 1, N 

6+haf~,  i = j  = 2, 3 . . . . .  N -  1 

aij = - 4 ,  li - j[ = 1 

1 ,  [ i - j [  = 2  

0,  I i - j l > 2  

and C = (ci) is the N-dimensional column vector given by 

h 4 
cl = h 4 g l + 2 c q - h 2 f l l  + 12 ( f ~ 1 7 6  

C 2 = h4g2 -~ l  , 

C i = h 4 g i  , i = 3, 4 . . . . .  N - 2 ,  

CN_ 1 = h4 gN_ l--O;2 , 

h 4 
cN = h4 gN + 2c~2 - h2 fl2 + i 2  ( f v  + l ~ 2 - gN + l ) " 

Thus, the left equation in (2.3) is 

(i) ( 5 + h 4 f 1 ) y l - 4 y 2 + Y 3  = c l  

(ii) y n _ 2 - - 4 y n  l + ( 6 + h 4 f n ) Y n - 4 y , + l W y n + 2  = h 4 g , ,  

(iii) Yu-z - 4YN-~ + (5 + h~fu)  YN = cu 

with, of course, 

Yo = y(xo)  = el and YN+x = Y(Xu+ l) = ~2 . 

(2.3) 

(2.4) 

(2.5) 

n = 2, 3 . . . . .  N -  1 (2.6) 

(2.7) 
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Numerical solution of  some ordinary differential equations 3 

3. Truncation error, error equation 

The right equat ion in (2.3) serves to define the local t runcat ion error  vector T =  (tz) associated 
with (2.6), the finite difference approximat ion  to the differential system (1.2). By using the 
relations 

Y"(Xo) = fix, Y"(xN+I) = f12, Y(4)(xi) = - - f i y (x i )+gi  

and (2.7), we may eliminate ei, fli, fi, and 9i to produce  

(i) tl = - 2y (Xo)+ 5y ( x l ) -  4y (xz)+ y (x3) 

_ h 4 y(4)(x 1) + h2 Y" (Xo)-t- ~-2h 4 yt4)(Xo) 

(ii) t. = y ( x . _ 2 ) - 4 y ( x . _  1)+ 6 y ( x . ) - 4 y ( x . +  l ) + y ( x . + 2 )  (3.1) 
-h4y~4)(x . ) ,  n = 2, 3 . . . . .  N -  1 

(iii) tN = - - 2 y ( x N + ~ ) + 5 y ( x N ) - - 4 y ( x N - a ) + y ( x N - 2 )  

_ h 4 y(4)(xu) + h 2 y" (xN +1) + 1~ h4 y(4)(xN +1). 

Using Taylor 's  formula with integral representat ion of the remainder,  namely 

y(x .+j)  = ~ .  y(i)(x.) + - -  ( 1 - t ) ky ( k+ l ) ( x .+ jh t )d t  
i=o k!  ' 

repeatedly irl (3.1) yields, after some variable changes of the form s =  +_jt, 

(i) t 1 = h 6 t'i Ga (s)y(6)(x 0 -k- hs)ds 

(ii) t. = h 6 G2(s)y(6)(x .+hs)ds ,  n = 2, 3 . . . . .  N -  1 (3.2) 
- 2  

f 3 (iii) t N = h 6 Gl(s )y  ~6) ( x N + l - h s ) d s  
0 

where the kernels G~(s) are given by 

GI(s) = 1@6o ( 3 - s )  5 , 2 < s < 3 

= T~6(3-s )  5 -~6o ( 2 -  s) 5 , 1 _< s < 2 

=T~6(3--s)5--3A6(Z--s)5+z-~(a--s)5--(1--s) ,  O<_s< 1 
and 

G 2 (s) = G 2 ( -  s) = 1@o (2 - s) 5 , 1 < s < 2 

- ~@6(2-s) 5 - ~ o ( 1 - s )  5 , 0 < s < 1. 

It is easily established that Gz(s) > 0  for i =  1, 2 so that  by the second law of the mean 

(i) t l = 3 ~ o h 6 y 6 ( ~ l ) ,  X o < ~ l < x  3 

(ii) t, =~hey~6)(~,) ,  X , _ z < ~ , < x , +  2,  n = Z ,  3 , . . . , N - 1  (3.3) 

(iii) t u = 3 ~ o h 6 y ( 6 ) ( ~ N ) ,  XN_  2 < I N <  XN+ 1 . 

Subtracting the equat ions of (2.3) yields 

AE = T ,  (3.4) 

where E = (el) is the error  vector with e i the error  of disr defined by 

ei = Y(Xi)--Yi.  (3.5) 

Thus, e~ is the amount  by which the numerical  approximat ion  Yl deviates from the actual  
solution y(xi) of (1.2) at x =xi .  
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From (3.3) and (3.4), the j th  entry of AE satisfies 

h 6 h 6 
6 M6 < (AE)j = tj < ~ M6,  (3.6) 

where M 6 = max l y (6)(x)]. 
Any further analysis now depends entirely on the properties of the matrices A and A o, where 

A o is the five-band matrix obtained from A by setting f~-= 0, so that 

- 4  1 5 

- 4  

1 

A 0 ~-- 

6 - 4  1 

- 4  6 - 4  1 

1 - 4  

1 

4. Properties of  the matrix A o and A 

6 - 4  1 

- 4  6 - 4  

1 - 4  5 

We shall prove that A o and, under certain conditions, A are both monotone matrices (that is 
the elements of A o i and A-1 are non-negative). 

We shall first deal with matrix A 0. Let P be a tridiagonal matrix given by 

f_ 2 - 1  1 
1 2 - 1  

P = . . . . . . . . . . . . . . .  

- 1  2 - 

- 1  

and if P -  1 = (p/j), then 

P / j  ~:  

(4.1) 

I j ( N - i + I ) / ( N + I ) > O ,  i > j  (4.2) 
i ( N - j +  I ) / (N  + I) > O , i <=j, 

[2, p. 363]. The matrix P is a monotone matrix. Furthermore, it can be verified that 

p2,  (4.3) 

see Henrici 

A o =  

and hence 

Ao 1 = [p -  112. (4.4) 

From (4.4) it follows that Ao is also a monotone matrix. We can determine the elements of 
Ao I using (4.4). If 

Ao 1 = (a*), (4.5) 

then the element a* is obtained by multiplying the ith row of P -  1, namely, 

1 
N + I  [ 1 . ( N - i + I ) ,  2 ( N - i + l ) , . . . , i ( N - i + l ) , i ( N - i - 1 )  . . . . .  i '2, i .1] (4.6) 

by the j th  column of P-1,  namely, 

1 
N + I  [ 1 . ( N - j + I ) ,  2 ( N - j + I ) , . . . , j ( N - j + I ) ,  j ( N - j ) ,  

j ( N - j - l )  . . . .  , j ' 2 ,  j" 1] t ,  (4.7) 
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where t denotes the operation of transposition. For the determination of a* explicitly, we will 
need the following algebraic identities. 

J 

(i) Z K2=~J(J+I)(2J +1) 
K = I  

i 

(ii) Z 
K = j + I  

N 

(iii) Z 
K = i + I  

K (N - K + 1) = 61- (i - j )  [3N (i + j  + 1) - 2 (i 2 +j2 +/ j  _ 1) ] 

( N - K +  1) 2 = ~ ( N - i ) ( N - i +  1 ) ( 2 N - 2 i +  l) .  

(4.8) 

We note that 4.8 (i) is a well-known identity and 4.8 (ii) and 4.8 (iii) can be proved by easy 
algebraic manipulations using 4.8 (i). 

Now assume i>j, then 

N 

= E P, KPK  
K = I  

j i 

= Z P,~;PKs+ Z P, KPKs+ 
K = I  K = j + I  

and on using (4.6) and (4.7) we obtain 
J 

(U+l)  2a* = Z K ( N - i + I ) K ( N - j + I )  + 
K = I  

N 

P.,6,s, 
K = I + I  

J 

= ( N - i + l ) ( N - j + l )  Z 
K = I  

i 

E 
K=j+ 1 

N 

+ E 
K = I + I  

i 

K2+J(N-i+1) Z K(N-K+I) 
K = j + I  

N 

+0 Z (N-K+1) 2, 
K = i + I  

K ( N - i +  1 ) j ( N - K +  1) 

i ( N - K + I ) j ( N - K + I )  

I 1 i2§  
a* = l j ( N - i + l )  2i q- U + l  N ~ - A  > 0,  using (4.8). (4.9) 

o r  

Since A o 1 is symmetric, hence on interchanging i and j  in (4.9), we obtain a* for i<j. Thus 
we have proved the following theorem. 

Theorem 4.1. 
Ao i = (a*), then A o i is symmetric and 

1 i2§ z ] 
l j ( N - i + l )  [2i + N + I  N ~ - J  > 0,  i > j  

a* = [2j 1 i 2 +j2] 
~ i ( U - j +  1) + N +  1 N ~ - J  > 0,  i=<j. 

The real, symmetric matrix A o defined by (4.3) is a monotone matrix and if 

We will now proceed to prove that the matrix A given by (2.4) is a monotone matrix under 
certain conditions. To this end we define d, = hZf~ and set D = diag (d,). Note that D z = A - A o. 

Lemma 4.1. The real symmetric matrix p - l _ D p - 2  has nonnegative entries if and only if 

d i<=6/ (N+l - i ) (U+l+i  ) for 1<_i<_(N+1)/2 

< 6 / i ( 2 N + 2 - i )  for (N+I) /2<i<_N.  (4.10) 
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Proof: This lemma follows from (4.2) and Theorem 4.1 when we examine the (i, j) entry of 
p - 1 _  DP-2. For a fixed i and j < i, this entry is 

[j (N + i -  1)/6 ( N +  1)] [6 -d i (2 iN  + 2i + 1 - i  2 _ j 2 ) ]  

while, for j > i, this entry is 

[ i ( N + j -  1)/6 (N + 1)] [6-d~(2 jN+2j+ 1 - i  2 _ j 2 ) ] .  

In the former case, a necessary and sufficient condition is that 

d,< 6 / ( 2 i N + 2 i + 1 - i z - j  z) for j =  1, ..., i 

or, equivalently, 

d i <= 6 / i ( 2 N + 2 - i ) .  (4.il) 

Similarly, 

d~ < 6 / (2 jU+2j+ 1 - i  z _j2) for j = i . . . . .  N 

or, equivalently, 

d i < 6 / (N + 1 - i) (N + 1 + i). (4.12) 

A comparison of (4.11) and (4.12) then yields the lemma. 

Lemma 4.2. A sufficient condition that P-  1 _ Dp-z  have nonnegative entries (for all N) is that 

0 < f ( x )  < 3 6 / ( b - x ) Z ( b + x - 2 a )  z for a <_ x <__ (a+b)/2 (4.13) 
and 

0 < f ( x ) <  3 6 / ( x - a ) Z ( Z b - x - a )  2 for (a+b)/2 < x < b (4.14) 

Proof: From (2.1) and (2.2) we may square both members of (4.10) to obtain 

h4f~ < 36h4 / (b -x i ) e (b+x , -2a )  2 for 1<  i< ( N + l ) / 2  
and 

h'f~ < 36h4/(x,-a)  z ( 2 b - x i - a )  2 for (N+  1)/2< i<  U .  

Since f~ =f(xi) ,  these relations are implied by the condition of the lemma. The proof is complete. 
Combining Lemma 4.2 and the Neumann series 

( I+M)  -1 = I - M + M Z - M 3 +  . . . .  

which is valid when p (M), the spectral radius of M, is less than 1, produces 

Theorem 4.2. I f  

0 < f ( x ) <  3 6 / ( b - a )  4 , (4.15) 

then the matrix A 9iven by (2.4) is monotone. 

Proof: From the preceding discussion, 

A = A o + D  2= P2+D2.  

Hence, A P - Z = I + D Z P  -e so that 

p 2 A - l = ( I + D Z p - 2 )  -1 

= I - ( D 2 p - 2 ) + ( D 2 p - 2 ) 2 - ( D 2 p - 2 ) 3 +  ... 

= [ I - D 2 p  -2] [I+(D2p-2)2+(D2p-2)4+ ...] 

if the two infinite series converge. 
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In a manner similar to the discussion in [-5, p. 202] one can establish that the eigenvatues of 
P are 

21 = 4 sin2 ( i ) i =  1,2, N �9 . - ,  . 

Hence, since x sin (l/x) is an increasing function of x for x > (2N+2)/n, 
( 7 c )  (N+I)  2 

P(P-1)  = lcsc2  2 T2 < 8 

and, by [-5, p. 47, Th. 2.8] and (4.15) 

p(D2p -2) < (max di)2 p2 (P -1) < 9/16. 

Therefore, the two infinite series converge. 
Let/5 be formed from D by replacing each diagonal entry by max dv Then 

A-1 = [ p - z - p - z D z p 2  ] [I+(DZp-2)2+...] 
> [ p - 2 _ / ~ 2 p - 4 ]  [i+(Dzp-2)2+ ...], 

where the inequality is valid because all factors involve nonnegative terms. 
Hence, to show that A is monotone, it suffices to show that 

p-2 _/~2 p-4 ~ 0. (4.16) 

Since p - Z ~ z p - 4 = ( p - 1  _~p-2)(p-1 + b p - 2 ) ,  (4.16) will be implied by 

p -1  _ / ~ p - 2  => 0.  (4.17) 

Now, (4.15) implies (4.13) and (4.14) with f(x) replaced by max f(x). Hence, Lemma 4.2 is 
valid with D replaced by/~. Thus, (4.17) holds and Theorem 4.2 is proved. 

Note that (4.16) is a weaker condition than (4.17). An improved theorem may follow from 
(4.16) and the explicit entries of p-4 .  

Remark: While stronger theorems no doubt exist, the upper bound in (4.15) cannot be 
disregarded altogether. For example, if, in (2.4), each f~ = 1000/(b - a) 4, then it can be shown 
that for all N > 5, the i = 1, j =  N entry of A-1 is negative. 

Having proved that both matrices A and A o are monotone satisfying A > A o, it therefore 
follows from [2, p. 362, Th. 7.5] that 

0 < A  -a < A o  1 (4.18) 

Combining (3.6) and (4.18) will provide the next step in the error analysis. 

5. Analysis of  discretization error, convergence of the method 

Our main concern here is to derive a bound on [ei[, defined by (3.5), and a bound on I[E[I = 
max Jell. In order to do so we will need the following lemmas. 

Lemma 5.1. For i= 1, 2 . . . . .  N 

i(N+ l - i )  
a * -  24(N+1)  [(N+l)(ai2+4i)-(3i3+4iz- i -2)]  

j = l  

and 
N 

2 j=i+l 
i(N+ 1 - i)  [ ( N +  1) 3 + ( N +  1) 2 i - ( N +  1)(5i 2 + 4 i -  1) 

a* - 24(N+1)  

+(3i3+4i2-i--2)]. 

We can easily prove Lemma 5.1 by the application of Theorem 4.1, although for the second sum 
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we need the following identities 

N 

y 
j = i + l  

N 

2 
j = i + l  

N 

y 
j = i + l  

j = I ( N +  1 + i ) ( N - i ) ,  

j2 = 1 [ N ( N  + 1)(2N + 1) - i ( i  + 1)(2i + 1)],  

j3 = �88  2(N+1) 2 - i2 ( i+1)2 ] .  

Lemma 5.2. For i= 1, 2 . . . . .  N 

N a * -  i(N+l--i)24 [ i ( N + l - i ) + ( N + l ) 2 + l ]  
j = l  

( x , - a ) ( b - x , )  
- 24h 4 [ ( x i - a ) ( b - x i ) + ( b - a ) Z + h 2 ]  �9 (5.1) 

Proof: 
We now turn back to the error equation (3.4) and write it in the form 

E = A - 1 T  

where the components of r are given by (3.1) or (3.2). 
Clearly, IE[ < IA-11"I r l ,  whence (4.15) and (4.18) imply 

IEI < A o ' l T I .  
Thus, 

h 6 N 
lell < a*ltjl < M6 ~ a* by (3.6) 

j = l  = 6 -  ~ " j = l  

Now, from Lemma 5.2 we finally obtain 

leil < h2 M6 
144 (xi - a)(b - xi) [ ( x i -  a)(b - x,) + (b - a) 2 + h 2 ] 

h2 M6 
144 (xi - a)(b - xi) [ ( x , -  a)(b - x,) + �88 - a) 2 ] < 

and, hence, 

Lemma 5.1 gives the first equality. Then (2.1) and (2.2) give the second equality. 

(5.2) 

[IE 11 < h2 (b - a) 4 
384 M6' (5.3) 

since 

( x -  a)(b - x) < �88 (b - a) 2 . 

Thus, 

IIEII _-< Ch 2 , 

where C is a positive constant independent of h, and it follows that II E II ~ 0 as h ~ 0. Therefore 
the method defined by (2.6) for the numerical integration of the boundary value problem (1.2) 
is convergent. 

We summarize the above results in Theorem 5.1. 

Theorem 5.1. Let y(x) be the exact solution of the boundary value problem (1.2) and let y , (n= 
1, 2 . . . . .  N) be the exact solution of the system of linear equations (2.6). Let E be given by (3.5). 

if  
0 < f ( x )  < 3 6 / ( b - a )  4 on [a, b] ,  

Journal of Engineering Math., Vol. 9 (1975) 1-10 



Numerical solution of some ordinary differential equations 9 

then 

IIEll = O(h 2) 

satisfies (5.3) neglecting all errors due to round-off. 

Remark: Notice that (5.2) gives bounds  on e~ which are specific to the relative location of  
xi on the interval [a, b]. For  example, for i <  N/6 the bound  on levi f rom (5.2) is less than 
1 4  g-,/a2 
2 7  ~.~1~ . 

6. T w o  numer ica l  i l lustrat ions  

In this concluding section we first illustrate the technique of this paper  by a numerical  example 
of  the form (1.1). We choose 

l = 2 ,  D = I ,  k = 4 ,  q = l ,  

f rom which the differential equat ion in (1.1) becomes 

w(4)+4w = 1.  (6.1) 

The exact solution is 

w(x) = 0.25 [ 1 - 2 ( s i n  1 sinh 1 sin x sinh x 

+ c o s  1 cosh 1 cos x cosh x)/(cos 2 + c o s h  2 ) ] .  

The numerical  calculations were made on a PD P-10 computer  (at the University of  Pi t tsburgh 
Compute r  Center) using double precision ari thmetic in order  to reduce the round-off  error  to a 
minimum. The experimental results are briefly summarized in Tables 1 and 2. 

Table 1 lists the observed max imum error for various N when (6.1) is solved numerically. 
Table 2 displays at intervals of 1/8 the computed  values of  wi and ei when N is 127. 

To broaden  the scope of the application of our  method,  we now consider an example of  the 
form (1.2), namely, 

y(4) + xy = - (8 + 7x + x 3) e x (6.2) 

TABLE 1 

N h IIEII 

3 1/2 0.5209 x 10 -2 
7 1/4 0.1289 X 1 0  - 2  

15 1/8 0.3215 • 10 3 
31 1/16 0.8031 x 10 4 
63 1/32 0.2007 x 10 -~ 

127 1/64 0.5018 x 10 -s 

TABLE 2 (N=127) 

+_ X i W i e i X 106  

1.0 0.0 0.0 
0 .875 0.025169 0.984 
0 .750  0.049150 1.929 
0 .625 0.070955 2.798 
0 .500  0.089793 3.557 
0 .375 0.105046 4.179 
0 .250  0.116257 4.640 
0 .125 0.123107 4.923 
0.0 0.125411 5.018 
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TABLE 3 

N h llElt 

3 1/4 0.7160 X 10  - 2  

7 1/8 0.1744 • 1 0  - 2  

15 1/16 0.4330 X 1 0  . 3  

31 1/32 0.1081 x 10 -3 
63 1/64 0.2703 x 10 4 

127 1/128 0.6756x 10 5 

R. A. Usmani, M. J. Marsden 

TABLE 4 (N=127) 

xl Yl - el x 10 6 

0.0 0.0 0.0 
0.125 0.123941 2.519 
0.250 0.240759 4.670 
0.375 0.341020 6.152 
0.500 0.412187 6.750 
0.625 0.437876 6.350 
0.750 0.396942 4.961 
0.875 0.262380 2.736 
1.000 0.0 0. 

subject to the boundary conditions 

y(0) = 0  y(1) = 0  
y"(0) - 0 y"(1) = - 4 e .  (6.3) 

The analytical solution of (6.2) and (6.3) is given by 

y ( x )  = x ( l  --  x ) e  x . 

We summarize our experimental results in Tables 3 and 4. Table 4 corresponds to N =  127. 
It is further verified from Tables 1 and 3 that on reducing the step-size from h to hi2, the 

maximum observed error in absolute value is approximately reduced by 1/4. This establishes 
the fact that our numerical method is of  order 2, as Theorem 5.1 asserts. Tables 2 and 4 demon- 
strate the behavior of  ei which was noted in (5.2) above. 
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